
MP2I - 2025/2026 Informatique – TP n°11 – Programmation impérative en OCaml 1/3

TP n°11 – Programmation impérative en OCaml

1. Exercices avec des boucles

■ Q1. Écrire une fonction qui prend en entrée 𝑛 et calcule
𝑛∑︁

𝑘=1
3𝑘3+ ln(𝑘) +5 en utilisant une boucle et une référence.

■ Q2. Écrire une fonction impérative fibonacci : int -> int calculant le terme d’indice n de la suite de Fibonacci
définie par 𝐹0 = 1, 𝐹1 = 1 et pour tout 𝑛 ⩾ 0, 𝐹𝑛+2 = 𝐹𝑛 + 𝐹𝑛+1, en utilisant deux références.

■ Q3. Déterminer à partir de quel rang la suite définie par 𝑢0 = 1, 𝑢1 = 1 et 𝑢𝑛+1 = 3 ∗ 𝑢𝑛 + 𝑢𝑛−1 + 1 dépasse 250 en
utilisant une boucle et des références.

2. Algorithme d’Euclide
■ Q4. Écrire une fonction euclide : int -> int -> int programmant la version impérative de l’algorithme d’Eu-

clide.
Rappel : l’algorithme d’Euclide sur 𝑎 ≥ 𝑏 consiste à trouver leur PGCD en remarquant que 𝑝𝑔𝑐𝑑(𝑎, 𝑏) =

𝑝𝑔𝑐𝑑(𝑏, 𝑟) où 𝑟 est le reste de la division euclidienne de 𝑎 par 𝑏.
■ Q5. Modifier la fonction pour qu’elle affiche les divisions euclidiennes successives. Par exemple :

OCaml

euclide_affiche (fibonacci 11) (fibonacci 10);;
89 = 55 x 1 + 34
55 = 34 x 1 + 21
34 = 21 x 1 + 13
21 = 13 x 1 + 8
13 = 8 x 1 + 5
8 = 5 x 1 + 3
5 = 3 x 1 + 2
3 = 2 x 1 + 1
2 = 1 x 2 + 0
- : int = 1

Indication : on pourra utiliser la fonction suivante qui imprime les choses joliment :

OCaml

let affiche_division a b =
print_int a;
print_string " = ";
print_int b;
print_string " * ";
print_int (a / b);
print_string " + ";
print_int (a mod b);
print_newline ()

;;

3. Tableaux
■ Q6. Ecrire une fonction range : int -> int array qui prend en entrée 𝑛 et renvoie le tableau [|0;1;...;n-1|].
■ Q7. Écrire une fonction init: int -> (int-> 'a) -> 'a array tel que init n f initialise un tableau de taille n telle

que la case d’indice i est (f i).
Par exemple si on définit let f x = x*3, alors init f 4 renvoie [|0;3;6;9|].

■ Q8. Écrire une fonction fibonacci_tab : int-> int array renvoyant le tableau des 𝑛 premiers éléments de la suite
de Fibonacci.

■ Q9. Écrire une fonction map: ('a-> 'b)-> 'a array -> 'b array qui prend en entrée une fonction f et un tableau
t et renvoie un tableau dont l’élément 𝑖 est f tab[i].

On cherche à écrire une fonction miroir : 'a array -> unit qui renverse l’ordre des éléments d’un tableau. Un
élève propose le code suivant :

MP2I - 2025/2026 Informatique – TP n°11 – Programmation impérative en OCaml 2/3

OCaml

let miroir tableau =
let n = Array.length tableau in
for i=0 to n-1 do
tableau.(i) <- tableau.(n-i-1)

done
;;

■ Q10. Essayez ce code sur deux ou trois exemples de taille 5. Qu’en pensez-vous? Écrire une version qui marche.
Remarque : si vous ne voyez pas en quoi ça ne marche pas, essayez sur un tableau qui n’a aucun doublon.

■ Q11. Écrire une fonction copy : 'a array -> 'a array qui copie un tableau.
■ Q12. Tester les lignes suivantes :

let t = [|0;1;2;3|];;
let t' = copy t;;
t'.(0) <- 100;;
t.(0)=t'.(0);;

Si la dernière ligne renvoie False, passez à la suite. Sinon votre fonction est incorrecte, retournez à la question
précédente.

4. Quelques exercices sur les matrices
On cherche à créer notre propre version de la fonction make_matrix : int -> int -> 'a -> 'a array array qui construit
une matrice de la taille donnée en entrée.

OCaml

let make_matrix nb_lignes nb_colonnes val_init =
Array.make nb_lignes (Array.make nb_colonnes val_init)

;;

■ Q13. Tester
let m = make_matrix 3 3 0;;
m.(0).(0) <- 3;;
m;;

■ Q14. Pourquoi la fonction est-elle incorrecte ? Écrire une version correcte.
■ Q15. Écrire une fonction make_tenseur: int -> int -> int-> 'a -> 'a array array array qui initialise un tableau

à 3 dimensions.
■ Q16. Écrire une fonction dimensions : 'a array array -> (int*int) qui calcule le couple (𝑛, 𝑝) des dimensions d’un

matrice et qui lève une exception si le tableau de tableaux n’est pas bien formé, c’est à dire s’il ne représente
pas une matrice.
Un exemple de tableau mal formé est [|[|0;1|];[|2;3;4|]|] où la première ligne a 2 colonnes et la deuxième
ligne a 3 colonnes.

■ Q17. Écrire une fonction transposee : 'a array array -> 'a array array qui calcule la transposée d’une matrice
carrée. C’est à dire qu’elle renvoie une nouvelle matrice qui est la transposée de celle d’entrée.

■ Q18. Écrire une fonction transpose : 'a array array -> unit qui transpose une matrice carrée, c’est à dire la mo-
difie par effet de bord pour qu’elle devienne sa transposée.

5. Jouons au morpion
Dans cette section on va programmer un petit jeu de morpion dans le terminal, pour deux joueurs humains.
Pour cette section vous pouvez utiliser l’interpréteur pour débugguer mais vous ne pourrez le tester qu’en compilant.
On définit le type suivant :

type case =
| Vide
| Rond
| Croix

On représente le plateau du jeu de morpion par une matrice 3*3 de type case array array.
On rappelle qu’on peut lire une entrée donnée au clavier par l’utilisateur grâce à read_line(). La fonction read_line()

renvoie toujours une chaine de caractères.

MP2I - 2025/2026 Informatique – TP n°11 – Programmation impérative en OCaml 3/3

■ Q19. Écrire une fonction qui étant donné un plateau de jeu, l’affiche joliment dans le terminal. Par exemple :

■ Q20. Écrire une fonction qui crée un plateau vide
■ Q21. Écrire une fonction modifie : carte array array -> carte -> int -> int -> unit telle que modifie plateau

c x y met un jeton du type c aux coordonnées x,y du plateau. Si les deux entiers ne sont pas des coordonnées
valides ou si la case n’est pas vide, on levera une exception Coordonees.

■ Q22. Écrire une fonction tour : carte array array -> carte -> unit qui prend en entrée l’état actuel du plateau
et Rond ou Croix selon quel joueur doit jouer. Cette fonction demande au joueur correspondant de rentrer deux
entiers pour les coordonnées où il veut jouer et utilise la fonction modifie.
Si l’exception Coordonees est levée, on demandera au joueur de rentrer à nouveau deux coordonnées.

■ Q23. Écrire une fonction fini : carte array array -> carte qui prend en entrée un plateau et détermine si le jeu
est fini, c’est à dire si 3 jetons du même type sont alignés dans le plateau. Elle renvoie Vide si le jeu n’est pas
fini et sinon Rond ou Croix selon quel joueur a gagné.

■ Q24. Écrire une fonction morpion : unit -> unit qui permet à deux joueurs de jouer au morpion et affiche le ga-
gnant à la fin.

6. Lecture/écriture de fichiers
■ Q25. On vous donne un fichier a_sommer.txt de valeurs séparées par des virgules. Calculer la somme des valeurs.

Pour lire tout le fichier on pourra utiliser la structure de code suivante :
(*ouvrir le fichier et initialiser des variables*)
...

let continuer = ref true in
while !continuer do
try
let line = input_line le_fichier in
... (*Faire des choses*)

with (*S'il n'y a plus rien a lire, une exception est levée, on la rattrape*)
|End_of_file -> continuer := false (*On change cette variable pour finir la boucle*)

done;;

Si vous avez terminé écrivez le tri d’un tableau par insertion, par sélection et par le tri à bulles.

	Exercices avec des boucles
	Algorithme d'Euclide
	Tableaux
	Quelques exercices sur les matrices
	Jouons au morpion
	Lecture/écriture de fichiers

